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ABSTRACT

In this work, we consider the multiple sound source location esti-
mation and counting problem in a wireless acoustic sensor network,
where each sensor consists of a microphone array. Our method is
based on inferring a location estimate for each frequency of the cap-
tured signals. A clustering approach—where the number of clusters
(i.e., sound sources) is also an unknown parameter—is then em-
ployed to decide on the number of sources and their locations. The
efficiency of our proposed method is evaluated through simulations
and real recordings in scenarios with up to three simultaneous sound
sources for different signal-to-noise ratios and reverberation times.

Index Terms— localization, DOA estimates, distributed micro-
phone arrays, source counting, wireless acoustic sensor networks

1. INTRODUCTION

Wireless acoustic sensor networks (WASNs) represent a new
paradigm for acoustic signal acquisition. They typically consist of
nodes that are microphones or microphone arrays and feature sig-
nal processing and communication capabilities. WASNs find use
in several applications, such as hearing aids, ambient intelligence,
hands-free telephony, and acoustic monitoring [1]. A fundamental
requirement with significant research interest for WASNs is to es-
timate the positions of the multiple active sound sources using the
data acquired from the spatially distributed sensors. Location in-
formation is crucial in many signal processing tasks, such as noise
reduction, source separation, and echo cancellation.

Typically, localization methods are divided into two classes: the
direct and the indirect approaches [2]. Indirect approaches consist
of a two-step procedure: each sensor is usually a microphone ar-
ray that estimates time-differences of arrival (TDOAs) or direction
of arrival (DOA) estimates. The estimates are then combined at a
special node (the “fusion center”) to infer the source position. The
source locations are estimated through triangulation by intersecting
DOA lines from the sensors [3–5] or by estimating the intersection
of hyperbolas which are defined by the estimated TDOAs [6, 7].
An advantage of such methods is that they maintain transmission
requirements at low levels, as only the TDOAs or DOAs of the ac-
tive sources need to be transmitted at each time instant. However,
when multiple sources are active, a key problem is that each sensor
transmits the multiple TDOA/DOA estimates and the fusion center
receiving these estimates cannot know to which source they belong.
Moreover, in realistic scenarios missed detections can occur and
the TDOA/DOA estimates of some sources from some sensors may
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be missing. The correct association of estimates across the arrays
that correspond to the same source has to be found, otherwise loca-
tion estimation will result in ghost-sources, i.e., locations not cor-
responding to real sources. This is known as the data-association
problem. Solutions are proposed in [8–10] for scenarios with no
missed detections and in our recent work of [11] which considers
localization from DOA estimates—obtained using a DOA estima-
tion method, e.g., [12]—in scenarios with missed detections

On the other hand, direct approaches are based on scanning a
set of possible source locations and constructing a spatial likelihood
map that describes the plausibility that a source is active at each can-
didate location. Approaches to construct likelihood maps are based
on the Global Coherence Field (GCF) [13,14], the Steered Response
Power (SRP) [15, 16], or the different level of access that each sen-
sor has to different spatial positions [17]. The source location is
then estimated from the peak of the spatial likelihood map. The
work in [18] localizes multiple sources—whose number is known—
by sequentially estimating the strongest peak in the likelihood map
and then removing its contribution from the map, until all sources
are found. However, with an increasing number of sources, the like-
lihood maps exhibit many local maxima some of which correspond
to ghost sources, degrading the method’s performance.

All the approaches above require the number of sources to be
known a priori, which is not the case in a realistic scenario. In
this work, we present a method —that shares common characteris-
tics from both direct and indirect approaches—to estimate both the
number of sources and their locations. It is based on estimating a
location for each frequency of the captured signals, using the DOA
estimates from the arrays at that frequency. An outlier rejection
scheme is proposed to reject erroneous estimates due to noise and/or
reverberation. Assuming that the location estimates are generated
by a Gaussian mixture, we apply the Bayesian K-means clustering
algorithm [19] to estimate the means of the Gaussians, as well as
their number. The source number is given by the estimated number
of Gaussians, while the sources’ locations are given by their means.

A conceptually similar approach to counting is presented
in [20] that employs a variational bayesian framework to model
one-dimensional DOA estimates with a Gaussian Mixture. Their
algorithm starts with a large number of Gaussian components
(overdetermined case) and through an Expectation-Maximization
(EM) algorithm and appropriate thresholing on the mixture weights
some components are eliminated. After convergence, the number
of sources is given by the number of components with non-zero
weight. On the same spirit, a distributed approach to location esti-
mation is presented in [21]. Other variational EM approaches focus
on DOA estimation and counting and utilize mixtures of Watson
distributions to model the Fourier coefficients of the captured sig-
nals [22] or incorporate tracking [23]. Compared to these works,
our approach for online per-frame localization and counting oper-
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Figure 1: The effect of the outlier rejection process. (a) The per-frequency location estimates obtained using a history length of 1 sec. (b)
The corresponding smoothed histogram obtained by filtering with a rectangular window of length hX = hY = 50 cm in the x− and y−
dimension. (c) The location estimates that remained after the outlier rejection process with q = 0.35. The X’s represent the sources’ true
locations.

ates on a different way: it starts with one cluster (Gaussian compo-
nent) and successively splits or merges clusters, an approach which
eliminates the need for thresholding the estimated parameters.

2. PROPOSED METHOD

We consider a WASN with M nodes at known locations, each
equipped with a circular microphone array. We assume that an un-
known number of K sources are active at unknown locations.

2.1. In-node processing

The signals received at the ith microphone of each (say themth) ar-
ray are first transformed into the Short-Time Fourier Transform do-
main, resulting in the signals Xm,i(τ, ω) where τ and ω denote the
time frame and frequency index, respectively. We denote as (τ,Ω)
the set of frequencies ω for frame τ up to a maximum frequency
ωmax. In the remainder, we omit τ , as the procedure is repeated
in each frame. Each array m estimates a DOA in each frequency
ω ∈ Ω resulting in the DOA estimates Θm(Ω). For DOA estima-
tion in each frequency we use the method of [24]. However, note
that our proposed method for location estimation and counting is not
restricted to a specific DOA estimation method or array geometry.
The per frequency DOA estimates in Θm(Ω) are then transmitted
to the fusion center, which performs the localization and counting.

2.2. Processing at the fusion center

The fusion center estimates the number of active sources and their
corresponding locations based on the DOA estimates in Θm(Ω).

2.2.1. Per-frequency location estimation

First, a location is estimated for each frequency, based on the trans-
mitted DOA estimates from the arrays at that frequency. For lo-
cation estimation, we use the single-source version of our recently
proposed grid-based (GB) method, which is a computationally effi-
cient non-linear least squares estimator with high accuracy [11,25].
The GB method constructs a grid of L grid points over the area of
interest and finds the grid point whose DOAs most closely match the
estimated DOAs. The location for each frequency ω is estimated as
the co-ordinates of the grid point `∗(ω) that satisfies:

`∗(ω) = arg min
`

M∑
m=1

[A(Θm(ω), ψm,`)]
2 (1)

where ψm,` is the DOA of the `th grid point to the mth array and
A(X,Y ) denotes an angular distance function that returns the dif-
ference between X and Y in the range of [0, π] [11]. We create a
block of location estimates that contains the estimates of the current
frame and B previous frames—also referred to as history length.
Assuming that the signals are sufficiently sparse so that at most one
source is dominant at each time-frequency point [26], we expect
that the histogram of location estimates will have K clusters.

2.2.2. Outlier rejection

To remove erroneous estimates occurred due to noise and/or rever-
beration, we construct a two-dimensional histogram from the set of
location estimates obtained from the previous step. We smooth the
histogram by applying an averaging filter with a rectangular window
w(·, ·) of length hX and hY in the x− and y−dimension, respec-
tively. Erroneous estimates are expected to be of low cardinality in
the smoothed histogram. Thus, we remove any location estimates
whose cardinality is less than q times the maximum cardinality of
the histogram, where q ∈ [0, 1] is a pre-defined constant. The effect
of the outlier rejection is shown in Figure 1 for a case of two active
sources at 20 dB signal-to-noise ratio.

2.2.3. Clustering

The location estimates that remained are used for localization and
counting. To do this, we employ the Bayesian K-means clustering
algorithm proposed in [19]. The algorithm estimates the number
of clusters and their centroids, which in our case correspond to the
number of active sound sources and their locations, respectively. In
the following, we briefly describe the Bayesian K-means approach.

Let pppn, n = 1, . . . , N be the location estimates in the D = 2
dimensions, after the outlier rejection step. The algorithm assumes
that the data have been generated by a mixture of C Gaussians:

p(pppn|ααα,µµµ,ΛΛΛ) =

C∑
c=1

αcN (pppn|µµµc,ΛΛΛc) (2)

where ααα = {α1, . . . , αC} are the mixing coefficients, N (·)
is the normal distribution, and µµµ = {µµµ1, . . . ,µµµC} and ΛΛΛ =
{ΛΛΛ1, · · · ,ΛΛΛC} are the set of means and precision (inverse covari-
ance) matrices of the Gaussians. We also define a C-dimensional
binary cluster assignment variable zzzn so that znc = 1 if the nth lo-
cation estimate is assigned to cluster c (i.e., generated from the c-th
Gaussian component) and znj = 0 for j 6= c.
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In a Bayesian treatment of the mixture model, we place conju-
gate priors on the unknown parameters:

p(ααα) = D(ααα, φ0), p(µµµ,ΛΛΛ) = N (µµµ|m0m0m0, ξ0ΛΛΛ)W(ΛΛΛ|η0,BBB0)
(3)

whereD(·) is the Dirichlet distribution andW(·) is the Wishart dis-
tribution. The priors depend on the non-random hyper-parameters
{mmm0,BBB0, φ0, ξ0, η0}.

The Bayesian K-means objective is to minimize the following
function, jointly over assignment variables zzz = {zzz1, · · · , zzzN} and
the number of clusters C:

F(zzz, C) =

C∑
c=1

[
DNc

2
logπ +

1

2
log

ξc
ξ0

+
ηc
2

log|BBBc| − log
Γ(φc)

Γ(φ0)

−η0
2

log|BBB0| − log
ΓD
(
ηc
2

)
ΓD
(
η0
2

) +
1

C
log

Γ(N + Cφ0)

Γ(Cφ0)

]
(4)

where the dependence on zzz is through the cluster-dependent quan-
tities BBBc, ξc, ηc, φc that are described in the following, Nc de-
notes the number of locations that belong to cluster c, ΓD(x) =

π
D(D−1)

4
∏D
i=1 Γ

(
x+ 1−i

2

)
, Γ(·) is the Gamma function, and | · |

denotes the determinant of a matrix.
Update rules: Given C clusters, the algorithm performs the

cluster assignment by iteratively minimizing the cost function:

C =

N∑
n=1

C∑
c=1

zncγc(pppn) (5)

with

γc(pppn) =
ηc
2

(pppn −mcmcmc)
TBBB−1

c (pppn −mmmc) +
1

2
log|BBBc|

+
D

2ξc
− 1

2

D∑
d=1

Ψ

(
ηc + 1− d

2

)
−Ψ(φc) (6)

where Ψ(·) is the “digamma” function and the cluster quantities
{BBBc,mmmc, ξc, ηc, φc} are calculated as:

mmmc =
Ncp̄ppc + ξ0mmm0

ξc
ηc = η0 +Nc ξc = ξ0 +Nc

BBBc = BBB0 +NcSSSc + Ncξ0
ξc

(p̄ppc −mmm0)(p̄ppc −mmm0)T φc = φ0 +Nc
(7)

where p̄ppc and SSSc are the sample mean and sample covariance of
cluster c, respectively. The algorithm—being similar to K-means—
alternates between calculating the parameters {BBBc,mmmc, ξc, ηc, φc}
and updating the cluster assignment according to:

znc =

{
1 if c = arg minj γj(pppn)
0 otherwise (8)

The clustering assignment updates converge when the cost in Eq.
(5) is kept constant between iterations.

Split and merge procedures: To search over different number
of clusters, Bayesian K-means introduces split and merge opera-
tions which are based on the work of [27]. For each cluster a split
score is calculated, based on the Kullback-Leibler divergence be-
tween the local empirical probability density around that cluster and
the Gaussian mixture model. Moreover, for each pair of clusters i
and j a merge score is calculated based on the cosine distance of
the N−dimensional vectors that contain the posterior probabilities

Algorithm 1 Bayesian K-Means Clustering [19]
Input: Location estimates pppn, n = 1, . . . , N
Output: Number of clusters C, cluster centroidsmmmc, c = 1, . . . , C

1. Initialization: Set C = 1, perform clustering using Eq. (5)-(8) until
convergence, and evaluate Eq. (4) for this clustering assignment
2. Split operations: Calculate the split score for each cluster and sort them
in descending order of scores.

(i) Split the cluster with the highest score into two with centroidsmmm±ddd
wheremmm is the centroid of the cluster to be split and ddd = sss

√
λ with

sss being the principal eigenvector of the sample covariance matrix SSS
of the cluster to be split and λ its corresponding eigenvalue.

(ii) Perform clustering using Eq. (5)-(8) until convergence.
(iii) Evaluate Eq. (4) for the new clustering assignment.

a. If Eq. (9) holds, accept split and repeat STEP 2.
b. Otherwise, reject split and go to STEP 2(i) to split the cluster

with the next highest score.
3. Merge operations: Calculate the merge score for each pair of clusters
and sort them in descending order of scores.

(i) Merge the data points of the pair of clusters with the highest score
into one cluster.

(ii) Perform clustering using Eq. (5)-(8) until convergence.
(iii) Evaluate Eq. (4) for the new clustering assignment.

a. If Eq. (9) holds, accept merge and go to STEP 2.
b. Otherwise, reject merge and go to STEP 3(i) to merge the pair of

clusters with the next highest score.
4. Terminate when no more split/merge operations satisfy Eq. (9).

of the data points for the ith and jth Gaussian. The reader is referred
to [19,27] for more details on the merge and split scores, which are
omitted here due to space limitations.

The complete algorithm is described in Algorithm 1. After each
split and merge procedure the objective function in (4) is evaluated
so as to accept or reject the split/merge operation. To avoid overes-
timation on the number of sources caused when the algorithm tries
to overfit the data with a complex model with many clusters, we ac-
cept a split/merge operation only when the difference in the objec-
tive function is greater than a predefined threshold. More formally
if we denote as Fb(zzz, C) and Fa(zzz, C) the value of (4) before and
after a split/merge operation, we accept the operation iff

Fb(zzz, C)−Fa(zzz, C)

Fb(zzz, C)
> taccept (9)

The algorithm terminates when no more split/merge operations sat-
isfy (9), and outputs the number of clusters and their centroids,
which denote the number of active sources and their locations.

3. RESULTS

3.1. Simulation Results

We performed simulations on a square cell of a WASN with dimen-
sions of V = 4 m with four microphone arrays placed on the cor-
ners of the cell. Each array is a uniform circular array with N = 8
omnidirectional microphones and a radius r = 0.05 m. In each
simulation, the sound sources were speech recordings of 3 seconds
sampled at 44.1 kHz and had equal power when located at the cen-
ter of the cell. The signal-to-noise ratio (SNR) was measured as the
ratio of the power of each source signal when located at the center
of the cell to the power of the noise signal. To simulate different
SNR values we added white Gaussian noise at each microphone,
uncorrelated with the source signals and the noise at the other mi-
crophones. Note that this framework results in different SNR at
each array depending on how close the source is to the arrays.
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Figure 2: Location error as a percentage of the cell size V = 4 m
for various number of active sound sources and reverberation time
(a) T60 = 250 ms and (b) T60 = 400 ms

Table 1: Source counting success rates for various active sources in
different SNR and reverberation conditions.

T60 = 250 ms T60 = 400 ms
one two three one two three

SNR source sources sources source sources sources

0 dB 98% 83% 51% 91% 68% 28%
5 dB 99% 89% 67% 97% 77% 46%

10 dB 98% 95% 88% 97% 93% 67%
15 dB 99% 98% 92% 96% 96% 80%
20 dB 98% 99% 94% 97% 97% 85%

We used the Image-Source method [28] to simulate a room of
dimensions 10 × 10 × 3 meters and produce signals of omnidirec-
tional sources at various reverberation times. The WASN cell was
placed in the middle of the room with the arrays and the sources
being at 1.5 m height. We considered scenarios of up to three si-
multaneous sources. Each simulation was repeated 30 times and
the sources were placed within the cell with independent uniform
probability at a distance of at least 1 m away from each other and at
least 0.5 m away from the arrays. For processing, we used frames
of 2048 samples with 50% overlap, windowed with a Hamming
window. The FFT size was 2048 and ωmax = 4 kHz which is
the spatial-aliasing frequency for the given array geometry. For the
block processing we used a history length of 1 second which cor-
responds to B = 43 frames and the rectangular window for the
smoothing of the histogram was of length hX = hY = 50 cm.
For outlier rejection we set q = 0.35, thus removing location esti-
mates whose cardinality in the smoothed histogram is less than 35%
the maximum cardinality. The histogram bin size was 1 cm2. For
the Bayesian K-means, the hyper-parameters were set to φ0 = 2,
ξ0 = 0.1, η0 = D = 2,mmm0 = p̄pp, andBBB0 = 2d20SSS/trace(SSS), where
trace(·) denotes the trace of a matrix, p̄pp and SSS are the sample mean
and sample covariance matrix of the data, and d0 is determined by
computing the closest distance for 10% of the location estimates and
averaging between the 3 closest pairs. Finally, we set taccept to 0.01.

Table 1 depicts the source counting success rates as the percent-
age of frames for all 30 different source configurations—excluding
the firstB−1 frames for the history block initialization—where the
correct number of sources was found for one, two, and three simul-
taneously active sources for different SNR levels and reverberation

(a) RMSE = 4.62 %
Counting Rate = 97%

(b) RMSE = 3.53 %
Counting Rate = 74%

(c) RMSE = 9.14 %
Counting Rate = 14%

Figure 3: Location errors (the blue cloud of estimates) through-
out a 4-node square cell for real recordings of two and three active
sources (the red X’s). Each figure reports the location error (RMSE
as % of the cell size V ) and the source counting success rate.

time of T60 = 250 ms and T60 = 400 ms. The method almost
always identifies the correct number of sources in the single source
scenario. It also yields accurate source counting performance for
two and three sources, especially at the higher SNR cases for both
reverberation conditions. Figure 2 shows the corresponding root-
mean square error (RMSE) as a percentage of the cell size V , over
all sources, all 30 different source configuration for all frames where
the correct number of sources was detected. It is evident that the
proposed method achieves quite accurate localization for all cases
especially at higher SNR levels.

3.2. Results of Real Measurements

We also performed some real recordings of acoustic sources in a
4-node square cell with sides V = 4 meters long. The nodes were
4-element circular microphone arrays of 2 cm radius. The sources
were recorded speech signals of approximately 5 seconds duration,
played back through loudspeakers at different locations and their
SNR at the center of the cell was measured to be about 10 dB. The
parameter setting for our method was the same as reported in Sec-
tion 3.1. Figure 3 shows the results for different locations of two
(Figure 3(a) & (b)) and three (Figure 3(c)) active sources. It can
be seen that for the two source cases the method results in accurate
counting and localization. For the three source case, the counting
success rate is low, which is however also due to the fact that the
two sources in the middle of the cell are located too close together.
It should also be highlighted that these recordings took place out-
doors, and while they may not have many reflections, there was a
significant level of distant noise sources, such as dogs barking and
cars passing by. Moreover, the locations and orientations of the
arrays were not finely calibrated and had unintended offsets of a
few centimetres and degrees. Thus, the conditions were far from
ideal, making the results of our proposed localization and counting
method even more encouraging.

4. CONCLUSIONS

In this work, we considered the joint problem of source counting
and location estimation in a wireless acoustic sensor network, where
each sensor is a microphone array that transmits per-frequency
DOA estimates to the fusion center. We presented a method that
performs outlier rejection and incorporates a bayesian clustering ap-
proach that have been proposed when the number of clusters is also
unknown. Through simulations and experiments with real record-
ings we showed the effectiveness of our method to count the number
of active sound sources and accurately estimate their locations.
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